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Received 26 May 2005; received in revised form 10 January 2006; accepted 16 January 2006

Abstract

In this manuscript the state estimator design for a class of continuous bioreactor with Liouvillian system characteristics is addressed. The design
procedure take into account the sampled nature of the measured output for this kind of processes, considering the model systems structure, the state
equations are transformed in a sampled (discrete) system version, which under the considered assumptions are possible to estimate state variables
employing only current and past measured output values and model information, without tuning parameters to yield an exact and immediate
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tate estimation. The corresponding theory results of the proposed estimator are applied, where numerical experiments illustrate a satisfactory
erformance in comparison with a non-linear Luenberger observer.

2006 Elsevier B.V. All rights reserved.
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. Introduction

As it is well known, the estimation theory deserves an interest-
ng research field, because the estimation methodologies devel-
ped are widely employed in on-line monitoring, fault detection,
ystem synchronization and control system and so on. Some of
he most important estimation methodologies are related with
he observers design, where non-linear Luenberger-type filters,
alman filters, sliding-mode observers, etc. [1–4] have been pre-

ented in the open literature, on the other hand some techniques
s neural-networks have been successfully employed too [5,6].
owever, the over parameterization presented in this kind of

stimators arises several problems as high order systems, prob-
ems to generate gains tuning rules and so on. The problem of
he observer design for continuous systems with sampled mea-
ured outputs has been considered under the above frames [7–9].
or the above mentioned, the design of estimation procedures
onsidering the minimum parameterization looks adequate, to
ttack this issue the frame of differential algebra offers an impor-

tant tool for a class of non-linear systems, such that explicit
relationships that can be obtained for particular state variables;
it is an advantage for a class of observation and control prob-
lems. Since the early 1990s some papers have been related with
the dynamic characterization of a particular class of non-linear
systems named differentially flat [10,13] and Liouvillian sys-
tems [11], based on the frame of differential algebra. Some
researches have considered the observation problem for non-
differentially flat systems based on the characteristics of this
kind of equations via the total or partial non-flatness property of
the system models with application to monitoring and control
purposes [12], but considering in some sense standard observers
and continuous outputs availability. In this paper employing
the flatness characteristics a discrete algebraic estimator, which
only needs model and current and past input–output informa-
tion, is implemented considering as application example a class
of continuous biochemical system. The manuscript is com-
posed by the following sections, Section 2 is related with the
main definitions related with Liouvillian systems characteristics,
where it is proved that the mathematical model of the continu-
ous bioreactor, corresponds to a Liouvillian system. Section 3
∗ Corresponding author. Tel.: +52 55 5318 9000; fax: +52 55 5394 7378.
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presents the theoretical frame for the estimator design, Section
4 is related with the estimator application for a class of con-
tinuous biochemical reactor, where the proposed methodology
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is compared with a standard non-linear Luenberger observer
and finally Section 5 presents the concluding remarks of the
work.

2. Main definitions

In order to give an introductory background for the under-
standing of Liouvillian systems, the following definitions are
presented:

Definition 1. A dynamics is defined as a finitely generated
differentially algebraic extension H/k〈u〉 of the differential field
k〈u〉, where k〈u〉 denotes the differential field generated by k and
elements of a finite set u = (u1,u2,. . .,un) of differential quanti-
ties.

Definition 2. A differential transcendence basis
y = (y1,y2,. . .,ym) de H/k such that H = k〈y〉 is called lin-
earizing or flat output of the system H/k.

Definition 3. The number of state variables, not permissible
in terms of the flat outputs, is known as the defect of the non-
flat system, that is to say, the integer number, which does the
differential transcendence degree of H/k is minimal, is called
algebraic defect of the system.

Definition 4. A system H/k is differentially flat if and only if its
defect is zero. If its algebraic defect is non-zero, then the system
H
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Following an engineering vision, it is considered a material
mass balance model in this work. It is considered a class of con-
tinuous bioreactor, whose mathematic model is described by the
set of Ode’s, for substrate and biomass concentrations for the
biological phase, these kinds of reactor models are employed in
wastewater process, toxic compound degradation and metabo-
lites production and so on. Obviously more complex models with
more state variables could be employed, but the simple model
employed for the proposed estimator design would be enough.

The corresponding model is as follows [14]:

substrate mass balance (S):

Ṡ = D(Se − S) − µ(S)

Yd
X (1)

biomass mass balance (X):

Ẋ = −DX + µ(S)X (2)

where D is the dilution rate; µ(S) the specific growth
rate = k1S/k2 + S; Se the substrate concentration at reactor input;
Yd the yield coefficient; Y is the output measurement.

In accordance with Definition 1 the following equations define
a dynamic system H/k, where H = k(S, X, u), and k = �.
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/k is said to be differentially non-flat.

efinition 5. Let H/k be a given system and let M be such that
⊂ M ⊂ H. Moreover it is assumed that M/k is a flat subsystem
f H/k, and then can be said that H/k is Liouvillian if the ele-
ents of H − M can be obtained by an adjunction of integrals

r exponential of integrals of elements of the flat field M.

For further information of this definitions see Ref. [10].

.1. Application to continuous bioreactor model

There exists a wide range of models for biological systems;
he conceptual and mathematical framework for model’s devel-
pment is largely in place. However, there exist several obstacles
tanding in the way of using sophisticated biological models
or process analysis. These obstacles are related with the qual-
tative nature of much of the available biological information,
he lack of process measurements, mainly. Between the main
pproaches to develop mathematical models for biological react-
ng systems are the structured models, which consider in some
etail the phenomenology in the cells, the unstructured models,
hich take into account a global process behavior (for exam-
le Monod equation). The segregated models whose take into
xplicit account of the different physiological states of the cell
nd other approaches as expert system models, cybernetic model
nd so on. However, the material mass balance models which
re not really biological models at all in that they do not explicit
cknowledge of the presence of a biological component, but
rom the process engineering point of view they are the most
ommonly employed for optimization, monitoring and control
tudies.
From Definition 2 the corresponding substrate measured out-
ut is the named non-flat output as follows:

= S(t) (3)

et us show the Liouvillian properties of the considered exam-
le. From Eq. (2), the biomass concentration can be obtained as:

= Ẋ

µ(Y ) − D

ubstituting it in Eq. (1)

˙ = D(Se − Y ) − µ(Y )

Yd

(
Ẋ

µ(Y ) − D

)

rom this equation

=
∫

µ(Y ) − D

µ(Y )
Yd

(
u(Se − Y ) − Ẏ

)
dt

ith

= S(t)

he algebraic defect according with Definition 3 is related with
he state variable X (biomass concentration) therefore the biore-
ctor model is a non-linear Liouvillian system (Definitions 4 and
). Note that these explicit relationships for the state variables
ould be employed to estimate the corresponding states, but this

nvolves output derivatives and complex integrals to be solved,
hich can be a serious drawback for this approach, however
nder this frame is presented Section 3.
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3. Estimator design

Consider the following continuous Liouvillian system:

ẋ = f (x)

y = h(x)
(4)

Now, for the estimation design purposes, it is considered the
sampling time π > 0, if a solution of the system (4) is denoted
by f (t,x0) and initial condition x0, the π-sampled system of (4)
is:

xk+1 = f (π, xk); yk = h(xk) (4′)

Now, consider the following assumptions:

A1. It is assumed that the system (4′) has observability preser-
vation under output measured sampling conditions, and then the
system (4′) obeys the theorem presented in Ammar et al. [15].

A2. It is assumed that the strings of obtained outputs prior to
k = 0, are known from the times (1 − n) on. In other words, the
output values, Yk for 1 − n < k < 0 are known or available for use.

3.1. Notation

f
d
δ

δ

δ

o
ϕ

x
m
x

r

B
i
δ

f

E
o

xkδf (xk) = f (δxk)

xk = f (δ(f (δxk))) = f (f (δ2xk))
...

xk = fn−1(δn−1xk)

(6)

The elements in a finite sequence of advances of the output
signal, yk, are found to be given by:

yk = h(xk) = h(f 0(xk))

yk+1 = δ−1(h(xk)) = h(f (xk)) = hf−1(xk)

yk+2 = δ−1(hf (xk)) = (hf 2)(xk)
...

yk+(n−1) = (hfn−1)(xk)

(7)

Proposition 1. Let the system (4′) under the considered
assumptions, suppose that corresponding to the constant value,
ye, there exist a unique state vector equilibrium value xe. Then,
the system is constructible, i.e. there exist a map ζ: �n → �n

such that the system can be exactly reconstructed, from time
k = 0, on, in terms of the output yk and a finite string of previ-
ously obtained outputs, in the form:

xk = ζ(yk, yk−1, . . . , yk−(n−1)), k ≥ 0
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It is introduced a named delay operator δ to express the
ollowing δϕk = ϕk−1 and the corresponding advance operator
enoted by δ−1, such that the expression stands for the identity
−µϕk = ϕk+µ, and similarly δµϕk = ϕk−µ, for any µ > 0. Symbol

ˆ, as in, , stands for the collection {ϕk−1,ϕk−2,. . ., ϕk−µ}, i.e.
ˆµϕk = {δϕk, . . . , δ

µϕk}. Evidently, δ0 = δ̂0 = Id and δ̂1 = δ,
n the other hand δ̂−µϕk stands for the collection {ϕk, ϕk+1, . . .,
k+µ}= {ϕk, δ−1ϕk, . . ., δ−µϕk}.

Note that the system Eq. (4′) is equivalent to
k = δf(xk) = f(δxk) = f(xk−1); δxk+1 = xk = f(xk−1), then one
ay write xk−1 = f(xk−2) = f(δxk−1) = f(δ2xk) it is clear that

k = f(f(δ2xk)).
The expression fµ(δµxk) for µ > 0, should be clear from the

ecursion:

f i(δixk) = f (f i−1(δixk))

f 1(δxk) = f (δxk)

esides the operators δ and
�

δ satisfies the follow-
ng relation: δi�δ−iϕk = {ϕk,

�

δiϕk} since δi(ϕk,ϕk+1,. . .,ϕk+µ) =
i(ϕk,δ−1,ϕk,. . .,δ−µϕk). With it the corresponding expressions
or the state advance are defined by:

xk+1 = δ−1xk = f (xk)

xk+2 = δ−2xk = f (f (xk))
...

xk+i = δ−ixk = f (f i−1(xk))

(5)

mploying the system (5) in an iterative form, the following is
btained:
Provides the string outputs {Yk} for −n + 1 < k ≤ 0, is com-
letely known. Moreover, an initialization of the above equation
ith arbitrary chosen values, y−i with i = 1, 2, . . ., n − 1, an
ctual y0, still results in an exact reconstruction of xk for all
≥ n − 1.

ketch of proof. In accordance with the implicit function theo-
em and the considered assumptions, it follows that there, locally
xists a map ℘ such that the set of equations:

yk

yk+1

...

yk+(n−1)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

h(xk)

(hf 1)(xk)
...

(hfn−1)(xk)

⎤
⎥⎥⎥⎥⎦ (8)

as a unique solution for xk of the form:

k = ℘(
�

δ−(n−1)yk) (9)

aking (n − 1) delays in the above equation and using Eq. (4′),
he following is obtained:

n−1xk = ℘(δn−1�

δ−(n−1)yk) = ℘(yk,
�

δn−1yk) (10)

sing Eqs. (4) and (10) in Eq. (6):

k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk = fn−1(δn−1xk)

fn−1(℘(yk,
�

δn−1yk))

ζ(yk,
�

δn−1yk)

ζ(yk, yk−1, . . . , yk−(n−1))

(11)

ith k ≥ 0
The result follows. �
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4. Application example

One of the major bottlenecks in the application of computer
monitoring and control for biological process is the lack of
reliable, sterilizable and robust sensors for the on-line measure-
ments of process key variables, such as biomass, precursors and
product concentrations. In particular the biomass concentration
(or cell activity) is generally measured via optical techniques,
electrochemical detection and by viscosity, filtration and fluo-
rescence methods [16], but these approaches frequently do not
properly address the most important industrial problems and
necessities.

To tackle the problem mentioned above, several state esti-
mation techniques for bioprocess have been developed, these
techniques are often named soft-sensors and are based on bal-
ancing technique, this approach is adequate for steady-state
operation, however it becomes unstable when dynamic and cor-
rupted measured are presented [17,18]; filtering (observing)
theory where extended Kalman filters, non-linear Luenberger
observers, sliding-mode, high gain and so on [19,20]; observers
have been successfully employed, but they present some prob-
lems from the application point of view, for example: robustness
against modeling errors and noisy measurements, over param-
eterization, and tuning rules for the corresponding observer’s
gains.

The mathematical model of a class of continuous bioreactor,
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From Eq. (12)

Xk =
((

Yk − Yk+1

π

)
+ D(Se − Yk)

)
Yd

µ(Yk)
(14)

Substituting in Eq. (13) yields

Xk+1 = (1 − D + µ(Sk))

(
Yk − Yk+1 + D(Se − Yk)

Yd

µ(Yk)
π

)

(15)

Now, considering one step delay from Eq. (15), the following is
obtained:

Xk = (1 − D + µ(Sk−1))

×
(

Yk−1 − Yk + D(Se − Yk−1)
Yd

µ(Yk−1)
π

)
(16)

Note that Eq. (16) is an algebraic discrete estimator to infer
biomass concentration from the sampled substrate measured out-
put; it only depends on the input–output system and the model
information, without tuning parameters as the case of standard
observers. The parameters employed in the bioreactor model are
reported in [14], as can be observed in Fig. 1 the sampled sys-
tem output (dotted line) the sampling time is taken of 30 min,
i.e. π = 0.5 h. In Fig. 2 the proposed estimation methodology
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btained from a classical mass balances for biomass and sub-
trate concentrations is considered as an application example
see Eqs. (1) and (2)). The dynamic behavior of this process is
ighly non-linear and can originate multiplicity of steady states
r self-sustained oscillations. It is considered a constant volume
essel with a pure culture is fed with a sterile feed flow. The spe-
ific growth rate is giving by Monod’s model and the yield coef-
cient is as follows: µ(S) = 0.3S/1.75 + S and Yd = 0.01 + 0.03S,
espectively.

For a dilution rate D = 0.14 h−1 and Sf = 35 mg/L the open-
oop behavior of the bioreactor presents two steady states and
limit cycle of period one, which is present at the no wash-out

teady state of the bioreactor (X = 1.872 mg/L; S = 1.531 mg/L),
he considered initial conditions for the biomass and
ubstrate concentrations are Xo = 2 mg/L and So = 10 mg/L,
espectively.

The main issue of the proposed estimator design is to esti-
ate biomass concentration from sampled (discrete) substrate

oncentration measurements. To do this, an alternative dis-
rete presentation of Liouvillian system with Eqs. (1) and
2) is considered, via a forward finite differences discretiza-
ion scheme, such that the corresponding �-sampled system
s:

k+1 = Sk +
(

D(Se − Sk) − µ(Sk)

Yd
Xk

)
π (12)

k+1 = (1 + (−D + µ(Sk))π)Xk (13)

k = Sk
erformance is presented, as can be noted that the biomass con-
entration reconstruction looks satisfactory.

For comparison purposes, a non-linear Luenberger observer
s implemented too. The observer gain for the substrate observer
quation is considered as k1 = 1 h−1 and the corresponding
bserver gain for the biomass observer equation is k2 = 0.1 h−1

he initial conditions for the Luenberger observer are 0.25 and
6 mg/L for biomass and substrate, respectively. The non-linear
uenberger observer’s performance is shown in Figs. 3 and 4
here a satisfactory convergence is reached.
Note that the proposed methodology estimates the biomass

oncentration immediately and exactly from the measured out-
ut information, in comparison the observer presents a learning

Fig. 1. Substrate concentration measurements.
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Fig. 2. Biomass concentration reconstruction. Solid line ( ) simulation; mark
(*) reconstruction.

Fig. 3. Substrate concentration filtering using a nonlinear Luenberger observer.
Solid line ( ) simulation; dashed line (. ) filtering.

Fig. 4. Biomass concentration estimation using a nonlinear Luenberger
observer. Solid line ( ) simulation; dashed line (. ) estimation.

time period to converge to the real value of the biomass con-
centration. The above is very important when observer based
controllers are employed, such that undesirable dynamic effects
as the so-named peaking phenomena can be induced, This phe-
nomenon can produce large overshoots which can originate
control input saturation, or even worst closed-loop instabilities,
because in this situation the feedback is broken and the process
behaves as an open-loop with a constant input.

5. Concluding remarks

In this paper a class of non-linear systems named Liou-
villian is considered joint with their observability properties.
The sampled measurement consideration was tackled for these
kinds of systems to design a state estimator. Under the assump-
tions considered a �-sampled system version is constructed to
develop an algebraic state estimator, which only needs for prac-
tical implementation current and past output measurements an
model information, avoiding the use of tuning parameters as the
case of standard state observers. Theoretical properties of the
proposed estimator are presented to show the convergence char-
acteristics. As a study case a biological continuous reactor is
used as an application example, considering as sampled mea-
surement the substrate concentration, as usual, for this kind of
systems. Numerical experiments illustrate the adequate perfor-
m
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